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Coarse-grained models of tethers for fast self-assembly simulations
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Long molecular ligands or “tethers” play an important role in the self-assembly of many nanoscale systems.
These tethers, whose only interaction may be a hard-core repulsion, contribute significantly to the free energy
of the system because of their large conformational entropy. Here, we investigate how simple approximate
models can be developed and used to quickly determine the configurations into which tethers will self assemble
in nanoscale systems. We derive criteria that determine when these models are expected to be accurate. Finally,
we propose a generalized two-body approximation that can be used as a toy model for the self-assembly of
tethers in systems of arbitrary geometry and apply this to the self-assembly of self-assembled monolayers on
a planar surface. We compare our results to those in the literature obtained via atomistic and dissipative particle

dynamics simulations.
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I. INTRODUCTION

Flexible molecular chains play a large role in the self-
assembly of nanoscale systems. Tethered polymers, macro-
molecular chains attached to a surface by their ends, are
particularly interesting in this regard [1]. Self-assembled
monolayers (SAMs), formed by the adsorption of organic
molecules onto a surface, are one such example of a tethered
system. The ability to control the arrangement of molecules
in SAMs is highly sought to facilitate the development of
biocompatible materials, biosensors, microelectromechanical
structures (MEMs), membranes, and molecular electronics
[2-4]. Two-component SAMs are particularly interesting in
this respect because of their ability to microphase separate
into patterns whose geometric properties can be controlled
by varying the chain length, chemical functionality of the tail
group, and composition [5].

Various methods of modeling systems composed of flex-
ible molecules have been developed including self-consistent
field theory (SCFT) [6—11], scaling theories [12,13], multi-
scale modeling [14-16], and cellular free-volume theory
[17]. More recently, focus has shifted to the assembly of
tether ligands on nanostructured surfaces, particularly nano-
particles (NP) [5,18-22]. Interest in ligand-shell assembly on
NPs stems from the desire to combine the chemical proper-
ties of ligands with the unique optical and electronic proper-
ties of NPs. Toward this end, researchers have studied the
formation of Janus particles [23-32], in which NP surfaces
are functionalized with two types of ligands. Combining
multiple functionalities may lead to novel advances in bio-
logical sensing and catalysis [33]. Recently, the self-
assembly of ordered stripelike domains on the surface of
spherical nanoparticles was reported [5,21]. This stripe phase
and its properties have been studied computationally using
both atomistic simulations and dissipative particle dynamics
[5,22,34,35]. Results from these simulations demonstrate
that the microphase separation is thermodynamically con-
trolled.
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In addition to the self-assembly of tethers on surfaces,
there has recently been substantial computational studies of
the organization of colloidal NPs to which are grafted a finite
number of tethers [36—41]. Polymer-tethered spherical nano-
particles have been studied using both SCFT [42,43] and
polymer reference interaction site model (PRISM) theory
[44-46]. Zhang et al. introduced a computational framework
in which solvent conditions lead to the immiscibility of NPs
and tethers resulting highly ordered phases similar to those
found in block copolymers and liquid crystals [36]. Aniso-
tropic interactions due to particle shape and tether location
play an important role in the assembly of these structures
with  spherical ~ [47-51], cubic [41,52], rodlike
[38,39,49,53,54], V-shaped [55], and more complex shaped
nanoparticles [36]with tethers arranged in a variety of con-
figurations. In addition to the assembly of equilibrium struc-
tures, this framework has predicted a route toward dynamic
reconfigurability between helical structures through solvent
quality switchability [56].

The systems described above can all be described by the
following characteristics:

(1) The formation of a given thermodynamic macrostate
occurs via minimization of the free energy F=E—-TS, where
E is the internal energy, T is the temperature, and S is the
entropy associated with the macrostate.

(2) The entropy can be broken into two parts consisting of
(a) a configurational component S, that describes how the
set of all tethers is distributed throughout space and (b) a
conformational component S, that describes the various
shapes each tether adopts.

It is standard to employ computational methods such as
Monte Carlo (MC), molecular dynamics (MD), and dissipa-
tive particle dynamics (DPD) in predicting equilibrium self-
assembled phases in these systems. These techniques sample,
in different ways, the phase space accessible to a system with
the system eventually evolving to the global free energy
minimum if kinetic traps are avoided. Since these techniques
are limited to calculating the energy and not the free energy,
it is difficult to know if the system has evolved to the stable
global minimum or whether it is trapped in a kinetically
arrested state that is only a local free energy minimum. Fur-
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thermore, these simulations often take hundreds to thousands
of hours of computational time because of the large number
of states that must be sampled [5].

To circumvent these limitations, we seek a new method
able to calculate the free energy of a tethered system directly.
As a first step toward this goal, we coarse grain over the
tether conformations and replace them with an effective en-
tropic interaction. Our coarse-graining procedure will be
similar to the method used in converting an Ising model to a
¢4 field theory in that, in both cases, we obtain an effective
entropic interaction as part of a phenomenological free en-
ergy. Rather than replacing a collection of Ising spins with a
continuous field, we will be replacing the many individual
beads of a tether with a single bead located at the binding
site. This coarse-grained bead will possess an effective en-
tropy that contributes to the total system free energy.

In the limit that the conformational entropy is much
greater than the configurational entropy,

F=E- TSconform» (1)

is a good estimate for the free energy of the system. Since
tethers are flexible, the number of conformations accessible
to them may greatly outnumber the configurations they can
sample. As such, this approximation is expected to work well
for highly flexible tether systems, such as the linear organic
chains like those described above. This method of approxi-
mating the free energy provides two benefits. First, it allows
one to calculate ex post facto the change in the free energy
for systems whose configurational entropy is negligible. Sec-
ond, if F can be computed reasonably quickly, then one can
rapidly determine the stable states of the system by running a
Metropolis MC simulation on the coarse-grained system with
the degeneracy () that arises from the coarse graining ap-
pearing as a prefactor to the Boltzmann factor. This degen-
eracy can be absorbed into the exponent of the Boltzmann
factor as S=kgT In (), where S is the entropy associated with
the coarse graining. This is equivalent to replacing the en-
ergy in the Boltzmann factor with the free energy.

This paper is organized as follows. In the next section, we
describe in detail the mathematics behind our coarse-
graining scheme. In Sec. III, we consider the case where the
tethers are assumed to be noninteracting. In Sec. IV, we ap-
proximate the entropic interaction between tethers as a
simple two-body potential. In Sec. V, we examine how well
the two-body approximation holds for tethers grafted at one
end to planar surfaces. In Sec. VI, we use Metropolis MC
and our coarse-grained model to simulate the phase separa-
tion of tethers on a planar surface and compare with previ-
ously published results. In the final section, we discuss the
implications of our results.

II. EXACT FORMULATION OF THE CONFORMATIONAL
ENTROPY OF TETHERS

The system we consider consists of N tethers bound to a
surface of arbitrary geometry. Each tether’s attachment point
on the surface is free to move so that configuration of tethers
on the surface may change over time. We define tethers of
type i to be composed of L; beads each of radius o;. Each
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bead is bound a distance 20; away from its neighbors in the
chain and no beads may overlap. No other restrictions are
placed on a tether’s conformations. In this analysis, we con-
fine the tethers’ binding locations to lattice sites for simplic-
ity without loss of generality. Nearest-neighbor tethers inter-
act with energy —¢ if they are of the same type and zero
otherwise. The total energy of the system depends solely on
its configuration without regard to individual tether confor-
mations.

Consider a single tether bound to some site x on a surface
with a specified geometry. We define (), ; as the number of
conformations tether i can assume without allowing any of
its beads to overlap with either the system surface or another
bead in i. On a flat, cylindrical, or spherical surface, (), ;
=(); is identical for all sites in the system. In contrast, all
sites are not identical for tethers bound to corrugated or fac-
eted surfaces. (For tethers bound to small, mobile. interacting
colloidal particles, sites can be treated as either identical or
nonidentical depending on whether one treats the colloid as a
surface or as part of the tether.) For a system in which tether
beads can move in continuum space, (), ; will not be finite.
This will be of little consequence, however, since we are
concerned only with changes in the entropy and calculations
of AS require only knowledge of the ratio of the number of
obtainable states.

We define the avoidance probability p(i ® {k}) as the prob-
ability that tether i will not intersect any other tethers in the
set {k} in its local vicinity. Here, the local vicinity is defined
to be the maximum range over which tethers can overlap. It
should be emphasized that {k} is a set of mutually avoiding
tethers. The avoidance probability is useful to obtain since its
determination allows one to compute the conformational en-
tropy of tether i directly and therefore to calculate the free
energy change of the system. Given p(i®{k}), one easily
obtains the conformational entropy of tether i,

S;=kg In[Q, p(i ® {k})], (2)

where kz=8.617X 107 eV/K is Boltzmann’s constant, and
the total conformational entropy of the system is given by

N-1

S= E Si‘ (3)
i=0

We are not typically interested in the absolute magnitude
of the entropy but rather its change in going from one state to
another. To compute the change in the entropy that occurs
when tether i moves from site y with a local configuration of
tethers {;} to another site x with a local configuration of
tethers {k}, we have

AS.
00, & (K]~ [0, (i @ ()]
B

=IH{M} =1n{%] +1n["("®{"})}
Qy,ip(i ® {]}) Qy,i p(l ® {]}) :

(4)

As can be seen, we need not compute the exact value for
), ; since only the ratio matters. For systems in which (), ; is
identical at all sites, this ratio will cancel. In computing AS;,
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FIG. 1. (Color online) Three tethers i, j, and k with L;=L;=L;
=6 located along a line at positions x, y, and z, respectively.

which can be determined from the configuration only, we
have now effectively coarse-grained out any information
about the tethers’ conformations. It is worth stressing that
this entropy is the conformational entropy only and does not
contain any contributions by the configurational entropy.
Configurational states can be sampled directly by using Me-
tropolis MC to rearrange the tethers’ binding sites, as one
would rearrange the locations of spins in an Ising model.
Sampling states in this way will increase the computational
speed since one is not simultaneously sampling the many
conformational microstates of the tethers. The tradeoff is that
one must now compute the entropy so that it may be in-
cluded in the free energy term found in the Boltzmann factor.

To compute the entropy, one must compute p(i®{k}).
This avoidance probability cannot be calculated in any trivial
way because the interaction between tethers is statistically a
many-body interaction. For this reason, we must resort to
numerical methods to obtain p(i ®{k}). Before describing
how one can compute p(i ® {k}) numerically, it is illustrative
to show exactly why the effective entropic interaction be-
tween tethers is a many-body one. Consider a system of three
tethers arranged on a line as shown in Fig. 1. What is the
probability p(i ® j|k) that tether i located at x avoids tether j
located at y given the presence of a third tether k located at z
that does not overlap with j? We computed p(i ® j|k) using
MC in the following way. First, randomly generated self- and
mutually avoiding tethers j and k were created and placed at
positions y and z, respectively. Next, a self-avoiding tether i
was generated and placed at x. If i did not overlap j, the trial
was recorded as a successful attempt. This procedure was
repeated 10* times and the probability of a successful at-
tempt was calculated. A plot of p(i®j|k) as a function of z
for several values of y is given in Fig. 2. The probability of
i avoiding j increases as j moves away from i as one would
expect. However, the presence of k, which j must avoid,
affects j’s probability density, shifting it either toward or
away from i depending on the location of k. This shift results
in either an increase or decrease in p(i ® j| k). As this simple
example illustrates, the interaction between two tethers de-
pends not only on the distance between them but also on the
configuration of tethers around them, making the interaction,
by definition, a many-body interaction.

The many-body avoidance probability p(i®{k}) can be
calculated using MC integration in the following way. First,
generate the desired configuration of tethers in set {k} in any
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FIG. 2. (Color online) Plots of p(i®j|k) vs z for x=0 and
y=1 (red, circle), 2 (green, square), and 3 (blue, triangle). This data
was obtained from 10 000 trials with tethers of length L;=6 beads
each of radius 0;=0.5.

conformation that satisfies the constraint that all tethers must
be mutually avoiding. On a flat surface, one can choose this
first set of tether conformations such that all beads in a given
tether are arranged along a line perpendicular to the surface.
Second, choose a tether in set {k} and replace its conforma-
tion with a randomly generated conformation. If the tether
beads in this new conformation do not overlap with any
other beads belonging to tethers in {k}, keep the new confor-
mation; if not, repeat this step until a nonoverlapping con-
formation is chosen. Repeat this procedure until all members
of set {k} are replaced resulting in an entirely new conforma-
tion for all tethers in {k}. Next, generate a new conformation
for tether i. If tether i avoids all tethers in set {k}, then the
resulting structure is recorded as a successful attempt. Repeat
this procedure beginning with the first step and calculate the
fraction of successful attempts at nonoverlapping configura-
tions. This fraction will approach the p(i ® {k}) in the limit
that the number of trials goes to infinity.

In general, this method of computing p(i ®{k}) will be
time consuming for systems with long or densely packed
tethers because most newly generated conformations will
overlap with other tethers in the vicinity and many trials will
need to be attempted before an acceptable conformation is
found. Below, we will consider approximations of p(i ® {k})
that can be computed quickly, but first we consider whether
or not one can build a look-up table for the values of p(i
®{k}) obtained for different configurations. Look-up tables
can greatly expedite tedious calculations in a simulation. The
statistical interaction between tethers arises because adjacent
tethers share a region of free volume and shift their probabil-
ity densities to accommodate neighbors. However, even for
densely packed surfaces, it is reasonable to expect that two
tethers spaced a great distance apart are unlikely to interact.
To compute a typical range R for this interaction, we con-
struct N=(2R+1)? identical tethers consisting of L;=5 beads
each of radius 0;=0.25 into a hexagonal lattice in which
nearest-neighbor binding sites are a distance a=1 apart. Us-
ing the method described above, we compute p(i ®{k}) as a
function of the range R over which the tethers extend as
shown in Fig. 3. As can be seen, after a range R=5 adding
more tethers does not significantly alter p(i ® {k}).

The value obtained above for the range R is prohibitively
large. In principle, for a two component (i.e., two types of
tether) system of tethers arranged on a hexagonal lattice, one

011113-3



SANTOS, SINGH, AND GLOTZER

pli®fk})

0.08
0.06
0.04

0.02

0'000 2 4 6 8 10 R

FIG. 3. A plot of p(i ® {k}) vs the range of tethers included in the
simulation. This data were obtained from 10 000 trials with tethers
of length L;=5 beads each of radius ¢;=0.25.

could compute a look up table for p(i ® {k}) if the range were
nearest-neighbor or next nearest-neighbor since such systems
would need at most only 27=128 and 2'*=8192 entries, re-
spectively. However, with a range of R=5, one would need
212! entries, vastly more than any computer could compute in
the foreseeable future. For this reason, we must employ ap-
proximation techniques to compute p(i ®{k}). It should be
noted that modifying the values of L; and o; does shift this
interaction range, but this shift is not large enough to make a
look-up table profitable except in the case of very short or
sparsely packed tethers.

Any approximations of p(i ® {k}) must satisfy two criteria:
(1) they must allow us to compute reasonably accurately the
change in free energy associated with going from one state to
another, and (2) they must allow us to compute AS; quickly.
The first of these conditions is necessary in order to produce
correct results while the latter is a practical consideration that
is needed so that one can simulate the system quickly. In
addition to these two criteria, it is also desirable to have an
approximation scheme that is general enough that it can be
applied to a variety of systems. Below, we describe the con-
ditions under which an approximation will meet the first cri-
teria while in the next two sections we describe specific ap-
proximation techniques that meet the second criteria and can
be applied to a variety of different systems. The results be-
low are presented generally so that they remain true for ar-
bitrary system geometries.

We define F[] as the free energy of a system in some
configuration . The free energy can be determined from the
internal energy E[ ], which is purely a function of the sys-
tem’s configuration, and the entropy S[#] using

FLy]= E[4] - TS[y], (5)

We now define F'[] and S'[¢/] to be, respectively, the free
energy and entropy computed for the same configuration ¢
using some approximation. In general, there will be some
deviation between the exact entropy and the approximately
computed entropy such that

Syl =S"[y]+ el 4], (6)

where g[¢] is the error in the approximation of the entropy
computed for state . This error will generally be different
for different configurations. By combining the previous two
equations and making use of the fact that the internal energy
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FIG. 4. (Color online) A schematic of the free energy F vs
configuration ¢ calculated exactly (black) and using some approxi-
mate method (red). While there is a large net shift, the relative
values of F are constant so that the dynamics obtained by a MC
algorithm will be identical in both systems.

will be identical in both the approximate and exact cases, we
can derive that

Flyl=F'[y]-Te[y]. ()

In order for an approximation to be valid, it must produce
roughly correct values for the change in free energy associ-
ated with transitioning between two configurations. We de-
fine AF=F[&]—-F[ 4] as the change in free energy obtained in
the transition ¢— &. In order to meet the first criteria listed
above, it must be true that

AF =~ AF', (8)

where AF’ is the change in free energy computed using the
approximate method. Such a condition will be met if, for all
transitions

AF > TAe, )
or, equivalently,
AE-TAS > TAe, (10)

where Ae=¢g[ &]-¢[ ] is the difference between the approxi-
mation errors that arise in the calculation for states & and .
Since we are concerned with changes in the free energy and
not the absolute value of the free energy, it does not matter if
our approximation technique systematically overestimates or
underestimates F[ ], so long as it does so consistently for
every state. This fact is demonstrated schematically in Fig. 4,
which shows an approximation method that exhibits a strong
shift in the absolute value of F[¢] but no change in the
relative value of AF.

While matching the above criterion is sufficient to show
that an approximation is valid, this may not be a necessary
condition. In practice, it is difficult to confirm that this crite-
rion will hold for all transitions because of the prohibitively
large number of configurations that would need to be tested.
Since we are mainly concerned with determining which mac-
rostate is most stable, we can apply a less stringent criterion
that is easier to calculate, namely, that Eq. (9) must be true
only for transitions between macrostates,
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where the subscript M denotes that the transition must be
from one macrostate to another. The advantage of this crite-
rion is that we still obtain the relative values of free energy
between macrostates but we need not test every transition
between microstates within the same macrostate. Fluctua-
tions in & must be small relative to AF,; if we are to obtain
even qualitatively correct results. However, there is not nec-
essarily a problem if an approximation produces fluctuations
in the error that are larger than the fluctuations in a mac-
rostate’s free energy because that latter will generally be
small. As such, Eq. (11) represents a necessary condition that
may also be sufficient if one is concerned only with obtain-
ing the correct macrostate.

To compute Ag, one must first compute AS’ and AS using
the approximate and exact methods, respectively. The change
in entropy AS can be determined by first computing (), ; and
p(i®{k}) for each state using the MC integration methods
described above and then using Eq. (4). We shall define this
as the N-body method of computing the entropy. This
method, which uses no approximations, will be correct to
within numerical precision. In Secs. III and IV, we describe
in detail how one can compute AS’ for the noninteracting
tether and two-body approximations, respectively.

It should be noted that for every approximation made in
computing the entropy, there exists some range of parameters
where the assumptions hold true. This occurs when the inter-
action strength, which scales linearly with AE, is much
greater than kT and represents the limit in which demixing
occurs. In the opposite limit kz7> AE, that the approxima-
tion will hold if AS> Ae.

III. NONINTERACTING TETHER APPROXIMATION

The above calculation for the entropy change is exact.
Unfortunately, p(i ®{k}) is difficult to calculate because of
the many-body nature of the statistical interaction between
tethers. For this reason, it is advantageous to find approxi-
mations for AS. The simplest approximation that can be
made assumes that tethers do not interact. This assumption
will hold for systems in which

ln{%] > 1n[p—(l,® {’f})]. (12)
Q pli®{j})

This assumption fails for surfaces that contain identical bind-
ing sites since the left hand side of Eq. (12) will be zero.
However, when the left hand side is much larger than the
contributions due to the interactions between tethers, it will
dominate the calculation of the conformational entropy and
the interaction terms can be dropped. Intuitively, this as-
sumption is most likely to be valid in systems that have a
low density of tethers on the surface and display highly vari-
able surface curvature such as corrugated surfaces or faceted
particles. For example, on a tetrahedron, the value of (), ;
will depend on whether tether i is bound to a vertex, edge, or
face. Under the restriction of Eq. (12), the change in entropy
for moving tether i from one site to another can be approxi-
mated as

Vi
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X,1

AS; = In

. (13)

Q

Vil

For systems in which the noninteracting tether approxi-
mation is valid, the ratio {1, ;/{); can be calculated in the
following way. For every type of binding site x, generate a
random self-avoiding tether configuration bound to the sur-
face at x. Determine whether any of the beads in this tether
overlap with any point on the surface. If no beads overlap
with the surface, count this configuration as a successful
trial. Repeat this procedure many times and compute the
probability p,; that a tether of type i will not overlap the
surface when bound at point x. One can then calculate the
desired ratio as

Q.. .
i=1ﬁ (14)

Q_\r,i )4 Vi

If a surface with variable curvature is densely packed with
tethers, then calculating the ratio (), ;/(), ; may not be suffi-
cient because the interaction between tethers and their neigh-
bors may contribute greatly to the conformational entropy. In
addition, p(i®{k}) cannot be easily computed using the
simple approximations discussed below because the prob-
ability of two tethers overlapping will depend not only on
their location but also on the topography of the surface to
which they are bound. For these systems, one may be able to
approximate the number of conformations accessible to a
tether in a way that reflects the presence of other tethers in
the system without explicitly including them in the calcula-
tion. One such approximation can be obtained by following
the same rules described above with one exception. Replace
the requirement that tether beads not overlap the surface with
the requirement that all beads in tether i must be closer to i’s
binding site x than to any other binding site. Using this new
criterion, one can compute the entropy in a similar way to
that described above.

It may be possible to apply these noninteracting tether
approximations to faceted and corrugated particles. A com-
plete study of the performance of the above approximations
methods in these systems is beyond the scope of this paper
but will be included in a subsequent publication. It should be
noted that these two noninteracting tether approximations are
by no means exhaustive. It may be possible to consider a
variety of other mean-field-like approximations that do not
explicitly include the interactions between tethers.

IV. TWO-BODY APPROXIMATION

For many surfaces (planes, spheres, cylinders, etc.), each
binding site is identical or nearly identical so the noninter-
acting tether model cannot be employed. For these systems,
we need to compute the effective entropic interaction be-
tween tethers. Unfortunately, p(i®{k}) is more difficult to
compute than the simple ratios computed in the noninteract-
ing case presented above. The reason for this difficulty is that
our approximation method must, of course, satisfy the two
basic criteria listed in Sec. II. These two criteria are difficult
to implement simultaneously because accurate many-body
interactions are inherently slow to compute [57,58]. For this
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FIG. 5. (Color online) Two tethers i and j separated by some
distance r;.
reason, it is advantageous to consider two-body approxima-
tions that produce qualitatively similar results even though
this will inevitably sacrifice some accuracy in the calcula-
tion.

We seek a general approximation method that will be
valid for arbitrary system geometries. With this in mind, we
construct our two-body approximation in the following way.
Consider two tethers i and j bonded to some surface and
separated by some distance r;; as shown in Fig. 5. For the
sake of concreteness and simplicity, we will imagine the sur-
face to be planar, although the results are readily generalized
to nonplanar surfaces. We approximate the avoidance prob-
ability using a two-body potential, by assuming

pie{kh) = 11 pi®)), (15)

Jjefk}

where p(i®) is the probability that tether i bound at posi-
tion x avoids tether j bound at position y when no other
tethers are in the vicinity. Approximating many-body poten-
tials as two-body interactions is a common semiempirical
method [58]. In general, p(i ®j) will depend on the number
L; and radius o; of the beads. For a planar surface, p(i ® ) is
purely a function of the scalar distance r;; (or spherical angle
6;; for a spherical surface) between the tethers. For cylindri-
cal, corrugated, faceted, and other surfaces, p(i ® j) will de-
pend on the exact locations of i and j rather than just the
scalar distance between them.

Using MC, we calculated p(i® ) as a function of the
separation between i and j by repeatedly generating two self-
avoiding tethers a distance r;; apart and counting the number
of times the tethers did not overlap. The results, shown in
Fig. 6, are fit with the function

p(i ® j) = tanh[mr;; + $]/2, (16)

which contains two parameters m and ¢. This functional
form was chosen because it has the correct behavior in the
rij—°0 limit and because it has the expected qualitative
shape. More specifically, this functional form reflects the fact
that the probability of two tethers avoiding each other de-
creases sharply after they are brought within a certain dis-
tance of each other. In addition, this functional form rapidly
approaches one for all separations larger than this distance.
Using this fitted function and Egs. (2), (5), and (15), we can
compute p(i ®{k}) and the associated free energies for sys-
tems in any configuration. It should be noted that each dif-
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FIG. 6. (Color online) A plot of p(i®j) vs r; using both data
from MC integration (red circles) and the fitted functional form
(black line). This data was obtained from 10 000 trials with tethers
of length L;=6 beads each of radius ¢;=0.5. The data were fit to the
function form given in Eq. (16) with m=0.564 42 and
$=0.973 32.

ferent combination of tether types in a system, will require
its own fitted form for Eq. (16). In the next section, we show
that the two-body approximation exhibits qualitative features
of the N-body case and use the criteria of Sec. II to determine
under what conditions the results are expected to hold.

V. COMPARISON OF THE TWO-BODY APPROXIMATION
WITH THE EXACT CASE

Before examining whether or not the assumptions made in
the two-body approximation fit the criteria listed in Sec. II, it
is helpful to first show that they produce qualitatively similar
results. To do this, we first construct a 2R+ 1 by 2R+1 hex-
agonal lattice of tethers of length L; with beads of radius o;.
We then compute the value of p(i®{k}) for this one-
component system using the N-body MC integration method
described in Sec. II and compare this with the same result
computed using the two-body approximation. The results are
shown as a function of L; and o; in Figs. 7 and 8, respec-
tively. As can be seen, the plots are qualitatively similar al-
though there is a shift that suggests that the two-body ap-
proximation systematically overestimates p(i®{k}). As
stated earlier, a net shift in the entropy should not affect the
results so long as the shift is uniform over all states.

Since a net shift in the error will not affect the results, a
more appropriate metric with which to gauge the success of

p(i®{k})

08
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| | .
| - a a L
3 4 5 6 7 "

FIG. 7. (Color online) A plot of p(i®{k}) vs L; calculated nu-
merically using MC integration (black, square) and using the two-
body approximation (red, circle). This data were obtained from 10*
trials for tether beads of radius 0;=0.25 with R=5.
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FIG. 8. (Color online) A plot of p(i ® {k}) vs o; calculated using
the N-body MC integration method (black, square) and using the
two-body approximation (red, circle). This data were obtained from
10* trials for tethers with L,=5 beads with R=5.

the two-body approximation is given by the difference be-
tween the errors calculated for different macrostates. If the
difference between the errors is much smaller than the
change in free energy between these macrostates, then the
two-body method may accurately predict the stable state of
the system. It is known that DPD simulations of tethers on a
planar surface assemble three macrostates: phase separated
or demixed (D), stripes (S), and isotropic or mixed (1) [34].
To determine whether or not the two-body approximation
holds, we must measure the error for each of these phases.

For each of these three macrostates, we compute the in-
ternal energy per particle E,; ;, the entropy per particle S, ;,
the two-body approximation of the entropy per particle S,'W,
and the error in the approximation &), ;. The results for both
short (L;=3) and long (L;=6) tethers are shown in Fig. 9. For
both the N-body and two-body calculations, only the relative
value of the entropy can be computed,

[

g

§

=&

I PLPEIE
Ey,; -3¢ -2¢ -3¢/2
Syi| -5.95 | -2.03 | -4.22 | -2.64 | -4.21 | -2.47
'Sy, 344 | -1.30 | -2.72 | -1.69 | -2.67 | -1.73
i -2.51 | -0.73 | -1.50 | -0.95 | -1.54 | -0.74

FIG. 9. (Color online) A chart showing tether configuration and
energetic contributions from the D (left), S (middle), and I (right)
macrostates. The local configuration around either long (red) or
short (yellow) tethers determines the energy per particle Ej;; based
on the average number of nearest neighbors. For the demixed state,
this is computed in the limit that N—oc so that the interface and
boundaries can be neglected. For simplicity, we only consider
stripes of width 2 since they exhibit only one type of local configu-
ration for both tethers. In principle, one could calculate the average
energy and entropy per particle for wider stripes, but one must
average over multiple local configurations to do so. The N-body and
two-body methods are used to compute S, ; and SI’\,LI., respectively.
Numerical values of both entropies are given in units of
10~* eV/K. For the isotropic state, the entropy is taken as the av-
erage of 100 randomly generated configurations. The error & is
given as the difference between the exact and approximate entropy.

PHYSICAL REVIEW E 81, 011113 (2010)

TABLE 1. The values of entropy change computed using
N-body MC integration and using the two-body approximation for
the various transitions.

ASM,i AS}’W,i AaM,i
D—S 0.56x 1074 0.17x 1074 0.40%x 1074
S—I 0.09x107* 0.01x107* 0.08x 1074
D—I 0.65%107* 0.17x107* 0.48x 1074

Swi=kgIn[p(i ® {k})] (17)

and

Stia=ks ln[ 11 p(i®j)]. (18)

jelk}

The entropies of the isotropic state were computed by taking
the average entropy of 100 randomly generated configura-
tions. In any given macrostate, the magnitude of the error is
larger for longer tethers. This is to be expected since larger
tethers occupy more free volume, making it more likely that
many body effects will play a role. Using the data in this
chart, we can calculate the change in the entropy, the two-
body approximation for the change in the entropy, and the
error for each of the three possible macrostate transitions D
—3S, S—1I, and D—1. The entropy change between mac-
rostates is computed by taking the average value of entropy
change for the long and short tethers. The results are shown
in Table I. In all cases, difference in the errors Ag,,; is less
than, but on the order of, the change in entropy AS,, ; for that
transition. For this reason, the two-body approximation is
expected to perform well as a toy model at least in the limit
that £ is large; however it is not expected to produce quan-
titatively accurate results.

Using the data in Fig. 9 and Table I, we compute the
change in the free energy between macrostates AF; as a func-
tion of & for T=300 K for each of the three possible transi-
tions. Plots of AF;/(TAg;) are shown in Fig. 10. The results
are expected to be more accurate the further |AF;/(TAs;)|
deviates from unity. In addition to AF;, we use the data of
Fig. 9 to compute the free energy F; of each of the three
macrostates as a function of ¢ using both the N-body and
two-body methods (Fig. 11). For both plots, each macrostate
has a region where it has a lower free energy than the other

AF,
e

-5

-10

-15

002 004 006 008 “0.10 &

FIG. 10. (Color online) Plots of the free energy AF;/(TAg;) for
macrostate transitions D—1 (red, dashed), D—S (blue, dotted),
and S—1 (black, solid) vs & measured in eV.
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FIG. 11. (Color online) Plots of the free energy F; vs & (mea-
sured in eV) for macrostates I (blue, dotted), S (red, dashed), and D
(black, solid) computed (a) using N-body MC integration and (b)
using the two-body approximation.

two. These results are qualitatively similar both to each other
and to what one would expect based on the phase diagram
calculated using DPD simulations. Quantitatively, the value
at which the transition occurs is strongly shifted. This is not
cause for alarm since our model is not expected to give quan-
titatively precise results.

VI. MODEL SYSTEM: PHASE SEPARATION OF
UNEQUAL LENGTH TETHERS GRAFTED ON PLANAR
SURFACES

As mentioned earlier, phase separation in a mixture of two
types of tethers grafted to planar surfaces were studied ear-
lier using DPD [5,34] and three macrostates—D, S, and
I—were identified. It was found that (1) when the two types
of tethers are immiscible but equal in length, D is obtained;
(2) for a sufficient length difference between the tethers, as &
increases, the transition from I to S to D occurs. Also, within
the striped phase, wider stripes are formed for larger &; and
(3) when the length difference is increased while keeping &
constant, stripes become narrower. We now use our simple
toy model to simulate this system of tethers of different
lengths on a flat surface and test if it can reproduce these
three qualitative findings.

PHYSICAL REVIEW E 81, 011113 (2010)
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FIG. 12. (Color online) System configurations obtained as a
function of tether length difference dL and strength of attraction &.
As observed in DPD and atomistic simulations [5], stripes are ob-
served for sufficiently large dL provided £ is not too large.

Since the substrate is flat and €}, ; is identical for each
lattice site, we use the two-body approximation instead of
the noninteracting tether approximation. The systems of teth-
ers simulated along with the parameters m and ¢ for Eq. (16)
along with the interaction range, R, are listed in Table II.
These parameters were used in MC simulations of 576 (288
of each type) tethers grafted on a flat surface in a hexagonal
lattice of unit spacing. The phase-separated equilibrium pat-
terns obtained after 5000 time steps are shown in Fig. 11.

Comparing with the DPD simulations of Singh et al. [34],
we find good qualitative agreement between the results from
our model and DPD. When lengths of the two types of teth-
ers are equal (L;=3 for both tethers), D phase is obtained
expect when ¢ is very small and entropy clearly dominates.
On increasing length difference, we see that the S phase
starts to appear. Stripe width increases as & increases and
decreases as length difference increases. For very small &,
the I phase is always formed while for very large & we al-
ways obtain the expected D phase.

Our model is simulated in a manner similar to a two-
dimensional long-range Ising model. For this reason, the
CPU time needed to compute the interaction of one tether
with all of its neighbors grows as the range of interaction
squared. Rigorously speaking, two tethers can interact if
their separation is less than the sum of their lengths L. Prac-
tically, one can truncate the range of interaction at a value
much smaller than this since p(i ® j) ~ 1 for large separations

TABLE II. Fitted values for the potential.

Length of short tether Length of long tether m ¢ R
3 3 0.866442 1.05877 5.0
3 6 0.680911 0.935448 7.0
3 9 0.59626 0.850085 7.0
3 12 0.537607 0.777153 9.0
6 6 0.56442 0.907332 8.0
9 9 0.412497 0.788928 9.0
12 12 0.346807 0.760833 12.0
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as can be seen in Fig. 6. Taking this range as an upper bound,
the CPU time will grow as ~L?. A tether can more accu-
rately be viewed as a self-avoiding random walk (SAW).
Since the root mean square (RMS) displacement of a SAW
grows more quickly than the RMS displacement of a random
walk (RW), a RW can be used to compute a lower bound for
the CPU time. The range over which two tethers interact
should grow as the sum of their RMS displacements. For
equal length tethers, the range grows as ~ L for a RW. For
this range, the CPU time needed to compute all the interac-
tions with a tether will grow as ~L. From these bounds, we
can state that the CPU time needed will grow as ~L¢, where
1<a<2. In situations where the algorithm is expected to be
slow (e.g., for very long tethers or near critical points), it
should be possible to use a biasing scheme just as one would
in a long-range Ising model.

The results above confirm the ability of our method to
qualitatively incorporate conformational entropy contribu-
tions in phase transitions of tether systems. The method can
be easily extended to tethers grafted to spherical, cylindrical,
or corrugated surfaces and faceted nanoparticles. These ge-
ometries will be studied in future publications.

VII. CONCLUSIONS

In this paper, we have presented a coarse-grained model
of a system of tethers grafted at one end to a surface of
arbitrary geometry. In order to coarse-grain out information
about tether conformations, one must replace the information
lost with an effective entropic interaction between tethers
that will appear in the free energy. If one can find a suitable
approximation, then it is possible to compute the conforma-
tional entropy of the system. If the conformational entropy is
much larger than the configurational entropy, than one can
compute approximate values of the free energy and use them
to determine whether or not a state is a free energy mini-
mum.

In addition to describing the mathematics behind coarse-
graining tether systems, we have presented several simple
approximation methods that can be used for various systems.
These methods represent only a small fraction of the poten-
tial approximations that can be made for tether systems.
While more precise approximations can certainly be found,
the two-body approximation represents a particularly desir-
able choice since it is fast to compute and can be easily
applied to a number of different systems. Using Metropolis
MC simulations on system of tethers bound to a planar sur-
face, we have demonstrated that this two-body method can
quickly provide results that are qualitatively similar to those
found by non-coarse-grained systems run with DPD. In con-
trast to DPD, which can take hundreds to thousands of hours
of CPU time [5], the coarse-grained tethers system can gen-
erally find free energy minimum states in under a few hours.

PHYSICAL REVIEW E 81, 011113 (2010)

FIG. 13. A plot of the effective interaction V(r,-j) Vs separation
distance r;; obtained for £=0.2, m=0.660, and ¢$=0.998.

It is enlightening to compare our description of the inter-
action between polymeric chains with that of other research-
ers. While the toy model method we propose here lacks the
elegance of SCFT, PRISM, and other theoretical methods, it
is conceptually simpler and readily generalized to other
tether systems. To the best of our knowledge, no one has yet
applied the theories mentioned above to the self-assembly of
polymer tethers on nanoparticles of arbitrary shape. It is
straightforward to apply our model to systems of arbitrary
geometry. However, this simplicity and generalizability nec-
essarily sacrifices some accuracy in the calculation. In prin-
ciple, one might be able to include three body and higher
order corrections in the calculation if necessary, but this will
greatly reduce the speed with which one can simulate the
system (Fig. 12).

Finally, when entropy is computed for a system of tethers,
we gain insight into the role that tethers play in the self-
assembly of nanoscale systems. In general, the morphology
of an equilibrium state is determined by the competition be-
tween energetic and entropic interactions. The winner of this
competition is decided by the free energy. Since the phenom-
enological free energy we compute is treated like a potential
energy in the Boltzmann factor, it is of interest to inquire
about the shape of this “potential.” To see this, we compute
the free energy per particle for a system of two particles and
plot this effective potential V(r;;) between two like tethers as
a function of r;; in Fig. 13. As can be seen, the interaction
between particles exhibits a short-range attraction (due to the
square-well attraction between like tethers) and a long-range
repulsion due to the statistical interaction between tethers. In
this way, the effective interaction between tethers is similar
in some, but not all, respects to Ising [59], electrostatic [60],
magnetic [61], block copolymer [62-65], and chemically re-
active binary mixtures [66,67], all of which are known to
form stripes.
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